[X3] Tout ce qu'il y a à savoir sur la productivité des mines

Support technique et aide de jeu concernant le scénario principal des jeux X-BtF, Xt, X², X³, X³TC, X³AP.

Moderator: Modérateurs pour les forum Français

Mietitore
Posts: 428
Joined: Wed, 2. Jan 08, 14:05
x3

[X3] Tout ce qu'il y a à savoir sur la productivité des mines

Post by Mietitore »

I public the topic with the permission of: Thoto who I thank for the support!

It is in english because all the study was made by italians, with a nice brainstorming thread in italian forum, and I can translate only in english. I'm sorry about this and I'm looking forward to see this translated in your language. :)

Thanks to:
French forum Mods
Italian forum Mods and members and in particular to
Hugoz
BlackRazor

DannyD
Bizzy
All the ones who will partecipate to translation (contact your Mod)

Special thanx to:
jorganos (german forum)


PROLOGUE
-----------------

Mines... the strangest factory in the X-Universe.

I love to plan my next expansion with precision, I can easily find the balance of a station but I have a problem... how can I choose the right sector with the right asteroid on which I can build a mine that will sustain my complex productivity with raw materials?

This is the question that started this long discussion, all based on the infallible mathematical and logical language, that will lead us to the total knowledge of a mine behaviour... through other questions...

Why, with the change of the asteroid yield, all the empirical results, that we may imagine linear and easy to calculate, are not "so easy"?

Why with different yields we have the same production?

What happens if I choose to install a mine on a yield zero asteroid... or if I install the wrong mine on a wrong asteroid?

Why should I decide to build there and not here?

Why...

This topic is the answer to all questions about mines, from empirical sampling to code analysis, from formulae to tables... to the end of mines' mistery.


MINES AND PRODUCTIVITY
--------------------------------------

Abstract
To start: we want to allow anyone with a calculator in hand (but also paper and pen are good since the simplicity of calculations) to predict how many products a mine will produce knowing already the yield . Others have already developed speeches depth and better articulated about Factories, and Loop Complex.

Here we only talk of mines.

Far from me to give the idea that what follows as the infallibility and the importance of what I first inappropriately called “study”. After all I have not certainly discovered the Maxwell Equations, which only name them lead me to chilling school’s memories!

The "Equations of Mietitore" already named, play a little “different”.

Below we exposed the two "paths" that led to the equations:

1. Experimental – the sampling we have -> data -> chart -> equations closest possible to chart;

2. Analyzing the code - code reading -> interpretation -> adaptation -> equation (discovered by Garga-Potter).

The second of two routes grew after the publication of respect topic, as a result of numerous speeches, but mainly thanks to intense collaboration with Garga-Potter to who, with great personal pleasure (and much boredom by everyone else ...), I had a confrontation in “algebra tongue". The final equation was deduced by him: if anyone is interesting about the whole "gestation" which led to the result I invite you to read the numerous replies to the main post (in italian forum).

Otherwise, if you want to get quick and jump directly to the calculation, go to the end of the post, just copy the table and equations, and take a pen and paper and... Have fun.


EXPERIMENTAL METHOD
------------------------------------

Sampling and Analysis
So I decided to sample, during playtime, the various types of mine both Mineral and Silicon to find, once accumulated a certain amount of data to understand what's the relationship is between the yield of an asteroid deducted from the use of Mineral Scanner Upgrade and the potential productivity in time.

Since most of the cycles of stations last a minute and that every production is easily traceable to that unity of time, for convenience, exportability and comparability of the data I have decided to refer to the "minute" (aka 60 seconds).

I don't have made a lot of test indeed, even for reasons of time, but shortly after it was appear, as the rest was predictable, that the relationship between Profit and Productivity is linear, that the plan represented by a Cartesian straight. Consequently that to find had to be a equation of First Instance.

In this image (if you click on the thumbnail is the same in original size), I reported the results of sampling for mines with Profit from 1 to 10 and their graphs that represent the relationship between this and productivity.

[ external image ]

As expected the relationship is represented by lines on the plane. The formula for this type of graphic has to be something like

Y = nX + c

So considering Y = Productivity and X = Yield, empirically (or rather doing various efforts), I tryed to understand which value attach to "n" and "c" to come nearer to the representation that the graphics gived back putting in the data of the sampling.

I created and used four spreadsheets to immediately compare real data with the previsions of the formula i tryed. The following images shows some examples:

Ore Mine M
[ external image ]

Silicon Mine L
[ external image ]

Results
After some hours of lost sleep, I picked out the following formula which I bring up to scratch with some attempts that confirmed the good precision. I tryed to reduce the drifts which creates around real and expected data to minimum. These drifts born probably from the number of sampling which, clearly, if has been bigger it would be more exact.
Nevertheless the formula can be reckoned enough exact... mainly as designed for the game.

I reached these conclusion for the computation of the productivity. Notice that the result, as saied before, is expressed in product units for minute:

ORE MINE M

Productivity = 0,19 x Yield + 0,2

For more precision remember that 0,19 is a recurring decimal

The drifts of this formula is represented by a sinusoidal function of type X*Sin(X) and, instead of real date, has to be considered nonessential as fluctuate between +0,15 and -0,25 product units for minute. For example, on a value of production of 12 units for minute we will have an error of about 0,25 unts (equal to 2,8%).

ORE MINE L

Productivity = 0.47 x Yield + 0.4

This is the case in which for time reasons i could less improve, but at least for non excessive Yield the drift seems to be nonessential. As soon as i will have time i will try to improve the computation.

SILICON MINE M

Productivity = 0,5 x Yield + 0,5

Here the drift seems even to be absent, at least for Yield values non excessive.

SILICON MINE L

Productivity = 0,125 x Yield + 0,12

For more precision remember that 0,125 is a recurring decimal.

Also in this case the drift is almost nothing.

SIMPLIFYED FORMULA

For simplicity, but with detriment for the accuracy, con be used the following formula, more "memorized":
1. ORE MINE M --> Productivity = 0,2 x Yield + 0,2
2. ORE MINE L --> Productivity = 0.45 x Yield + 0,45
3. SILICOME MINE M --> Productivity = 0,5 x Yield + 0,5 (..equal to original)
4. SILICON MINE L --> Prouctivity = 0,12 x Yield + 0,12

Examples
Lets do some explaining practical examples

EXAMPLE 1:
Is given a ore asteroid, which yield is Ore = 15, using the formulae we obtain

Ore Mine M formula > Productivity = 0,19 x Yield + 0,2

Products per minute = 0.19 x 15 + 0,2 = 3,08 Ore

Ore Mine L formula > Productivity = 0.47 x Yield + 0.4

Products per minute = 0.47 x 15 + 0.4 = 7.45 Ore

Result: with good precision on this asteroid we can predict mine productivity in 3 Ore per minute in a M sized mine and 7.45 Ore per minute in a L sized one.

EXAMPLE 2:
Is given a silicon asteroid, which yield is Silicon = 23, using the formulae we obtain

Silicon Mine M formula > Productivity = 0.05 x Yield + 0.05

Products per minute = 0.05 x 23 + 0.05 = 1,2 Wafers

Silicon Mine L formula > Productivity = 0.125 x Yield + 0.12

Products per minute = 0.125 x 23 + 0.12 = 2.99 Wafers

Result: with good precision on this asteroid we can predict mine productivity in 1,2 Wafers per minute in a M sized mine and 2.99 Wafers per minute in a L sized one.


CODE ANALYSIS (joined work by Garga-Potter & Mietitore)
----------------------------------------------------------------------------------------

In this part of the topic I will use the plural form, that's not why now I have greatness obsession to use the "pluralis majestatis", but only because all comes out from the collaboration by me and Garga-Potter: without his support I surely had stopped to the empirical phase of it.

I will try to summarize all the phases that leaded us to the goal: if you don't love mathematics I suggest you to jump forward and copy the table and the formula that, after all, you can solve in 30 seconds also with paper and a pen.

Scripts and Parameters
Starting directly from the code part who manage the mine behaviour on X3 (taken by the linked topic by jlehtone, english moderator, who has our gratitude)
Basic_cycletime = rounddown( BASETIME / (Yield + 1) ) + 1 seconds
Multiplier = rounddown( 59.9 / Basic_cycletime ) + 1
Cycletime = Multiplier * Basic_cycletime
Products per cycle = Multiplier * Fab_size
the first problem comes from the knowledge of two parameters without which we can not solve the equations in first and third code line: BASETIME and Fab_size.

To simplify we set: K = BASETIME e J = Fab_size.

These parameters depend on the Mine type we wont to analyze (Ore Mine or Silicon Mine) and on the structure size (M o L).

On the following table you can find the values based on the mine type and size, with which we can calculate the productivity per minute:

[ external image ]

So, thanks to the code, now we can define the mine cycle-time (T) and the products number the mine produces for every cycle (P).

The steps
Now products per minute (Pm) are easy to desume from the simple mathematical relation

Pm = 60 * P / T

in which, from code lines, we can change

Pm = 60 * Multiplier * J / Multiplier * T

and with a simplification (Multiplier can be erased)

Pm = 60 * J / T

Now, looking at the first code line, we can replace T with the expression, considering int = rounddown (function that gives the integer part of an argument)

Pm = 60 * J / ( int ( 600 * K / R + 1) + 1

Finally: the formula
Definitely simplifying and balancing the coefficients we obtain the definitive formula to calculate a given mine products per minute, having the yield of the asteroid on which we wont to install it (c.d. Garga-Potter Formula). :D

[ external image ]

Replacing J and K with the table value and R with the asteroid yield we will obtain the mine products per minute (Pm).

Examples
EXAMPLE 1: We want to know how much a Ore Mine M can produce in a minute if placed on a Yield=15 asteroid.
In this particular case we can set K = 600, J = 120 (from the table) and R=15

First step we solve K / (R+1) = 600 / 16 = 37.5
than we calculate int(37.5)+1 = 37 + 1 = 38
and finally J / 38 = 120 / 38 = 3.15 Ore / minute

EXAMPLE 2: We want to know how much a Silicon Mine L can produce in a minute if placed on a Yield=10 asteroid.
In this particular case we can set K = 2400, J = 300 (from the table) and R=10

First step we solve K / (R+1) = 2400 / 11 = 218.181818
than we calculate int(218.181818)+1 = 218 + 1 = 219
and finally J / 219 = 300 / 219 = 1.369 wafers / minute

EXAMPLE 3: We want to know how much a Ore Mine L can produce in a minute if placed on a Yield=100 asteroid.
In this particular case we can set K = 600, J = 300 (from the table) and R=100

First step we solve K / (R+1) = 600 / 101 = 5.94
than we calculate int(5.94)+1 = 5 + 1 = 6
and finally J / 6 = 300 / 6 = 50 ore / minute

Easy, isn't it? :)


OTHER RESULTS AND TABLES
----------------------------------------

As a direct result of the deep mathematical study about mines, I calculate other equations used to generate four spreadsheets.

These are tables with the data obtained from the mathematical formulae found directly analyzing the script code who manage the calculations in game.

In these tables you can read the data about every single mine in realation with the asteroid on wich it is built accordingly to this

Legend:

Rendita (yield): Yield of an asteroid scanned with Mineral Scanner Upgrade
Prod / min: Mine production capability per minute (Pm)
Ciclo (sec): Mine production cycle-time in seconds (T)
Prod / Ciclo: Products per production cycle (P)
Celle / Ciclo: Energy needed per production cycle (E)


I will now list which formulae leads to the table data.

Set:
R = Yield (in italian is Rendita.. so it's "R")

and considering the parameters table in which

for Ore Mine M: J = 120, K = 600
for Ore Mine L: J = 300, K = 600
for Silicon Mine M: J = 120, K = 2400
for Silicon Mine L: J = 300, K = 2400

we have

Pm = J / ( int ( K / (R + 1) ) + 1 )
Garga-Potter's Formula

T = ( int ( 59,9 / ( int ( K/(R+1) ) +1 ) ) +1 ) * ( int ( K/(R+1) ) +1 )
deducted by script code

P = ( int ( 59,9 / ( int ( K/(R+1) ) +1 ) ) +1 ) * J / 60
deducted by script code and balanced

E = P * K / 100
deducted by samples

Finally here are the four tables we can now generate using the formulae:

Ore Mine M
[ external image ]

Ore Mine L
[ external image ]

Silicon Mine M
[ external image ]

Silicon Mine L
[ external image ]


CONCLUSIONS
---------------------

Data emerged from samples and deducted from the experimental equations match with those coming from the script-code, but, obviously those coming from the code returns more accurate results.
There is no doubt that this last equations are, despite of their harder difficuty to resolve, more precise, elegant and correct, but, for the easier kind of expression they hare, due to the lack of parameters, i keep in this topic also the experimental equations, for those who don't love mathematics so much. :D


THE X - MINE CALCULATOR
-------------------------------------

Thanks to the numerous formulae we found with the long process of this topic, great Garga-Potter, who leaded the creation process, presents us this utility to calculate, fast and easy, the data that now we can obtain.

Here is the link!
http://www.deligant.net/extra/X3MineCalc.php?lang=ru

----------------------------------------
Last update: 2008/04/10 18.31

All reported error and comments will be welcome.
Mietitore. :)
Last edited by Mietitore on Wed, 9. Apr 08, 18:35, edited 1 time in total.
Thoto
Posts: 1820
Joined: Wed, 6. Nov 02, 20:31
x4

Post by Thoto »

Le thread sera traduit dès que possible.

Un grand merci à nos amis Italiens pour avoir pensé à nous !
...Modérateur invisible, mais jamais bien loin !!!
[ external image ] [ external image ]
Insidel
Posts: 10
Joined: Fri, 16. Feb 07, 21:27
x4

Post by Insidel »

Une superbe étude !
Intro, Problématique, Expérience, conclusion, discussion. On croirait lire une expé qu'on me donne à la fac !

Great Job ! Thanks for sharing this study !
Construction du Gigacomplex en cours :
- Secteur sécurisé
- 519/519 stations construites dans Yurikasi (XTM)

X3 2.5 BP 3.107 + XTM 0.73 + SectorTakeOver 2.43 + PiloteIA + FCC
User avatar
adobis
Posts: 2125
Joined: Sun, 28. Oct 07, 19:22
x3tc

Post by adobis »

Je publie ce thread avec l'autorisation de Thoto et le remercie de son soutien.

Merci aussi :
Aux Modérateurs français du forum
Aux Modérateurs et membres italiens du forum
Ainsi qu'à tous ceux qui participeront à cette traduction

PROLOGUE
-----------------

Les mines... Les choses les plus étranges dans l'Univers X.

J'adore préparer mes nouveaux développements avec précision. Je peux planifier facilement un équilibre économique pour station, mais j'ai un problème... comment choisir le bon secteur avec le bon astéroïde sur lequel je vais construire une mine qui va alimenter mon complexe avec du matériel brut.

Voici la question qui est à l'origine de cette longue discussion, entièrement basée sur l'infaillible langage mathématique et la logique, qui va nous amener à la compréhension totale du comportement des mines... en nous forçant à répondre à d'autres questions...

Pourquoi, lorque la richesse de l'astéroide change, n'est-il pas "si facile" de calculer de manière empiriques les nouveaux résultats, que nous croyons linéaires ?

Pourquoi obtenons nous la même production avec différentes richesses d'astéroïdes ?

Qu'arrivera-t-il si je choisis d'installer une mine sur un astéroïde de richesse zéro... ou si j'installe la mauvaise mine sur le mauvais astéroïde?

Pourquoi dois je construire ici et pas là-bas?

Pourquoi...

Ce thread répond à toutes les questions sur les mines, du recueil de données expérimentales à l'analyse des chiffres, des formules aux graphiques... pour atteindre le fond du mystère des mines.

MINES ET PRODUCTIVITE
--------------------------------------

Résumé :


Pour commencer, nous voulons permettre à n’importe qui ayant une calculatrice (mais du papier et un stylo peuvent suffir car les calculs sont finalement assez simples) de prévoir combien une mine va produire, en connaissant au préalable la richesse de l’astéroïde. D’autres se sont déjà chargés d'explorer en profondeur le fonctionnement des usines et des complexes fermés.

Ici nous ne parlerons que des mines

Loin de moi l’idée de croire à l'infaillibilité ou à l'importance de ce que j'ai pompeusement nommé« une étude ». Après tout, je n’ai pas découvert les équations de Maxwell, dont le seul nom me renvoie à d’effrayants souvenirs d’école !

L’ « Equation de Mietitore », comme je l'ai appellée, fonctionne un peu différement.

Ci-dessous nous exposons les deux méthodes qui nous ont mené aux équations :

1.Méthode expérimentale : un recueil d'échantillons -> des donnés -> un graphique -> l’équation qui permet d’obtenir le graphique (avec le plus faible pourcentage d’erreur)

2.Analyse du code : lecture du code du jeu -> interprétation -> adaptation -> équation (découverte par Garga-Potter)

La seconde méthode a été plus utilisée après la publication de nombreux threads, mais surtout grâce à la collaboration importante de Garga-Potter avec qui, pour mon plus grand plaisir personnnel (et beaucoup de lassitude chez les autres…), j’ai débattu « en langage algébrique ». L’équation finale fut déduite par lui : si certains sont intéressés par l’enchaînement d’idées qui nous ont conduits à ces résultats, je vous invite à lire les nombreux messages au thread principal (sur le forum italien).

Sinon, si vous voulez faire vite, et arriver directement à la manière de calculer la productivité, allez à la fin du thread, copiez simplement le tableau et les équations, prenez un stylo et du papier et… amusez vous bien.
User avatar
Général Grievous
Posts: 4028
Joined: Tue, 14. Dec 04, 17:06
x4

Post by Général Grievous »

ca me rappele me cours de production/gestion/management :D d'ailleurs je les utilise déjà pour mon système économique pour avoir la meilleure production possible :D jamais je pensais me servir de tout ca en plus.

Sinon c'est du joli boulot!

Good work my friends! thank you!
Il vaut mieux mobiliser son intelligence sur des conneries plutot que de mobiliser sa connerie sur des choses intelligentes...
Mietitore
Posts: 428
Joined: Wed, 2. Jan 08, 14:05
x3

Post by Mietitore »

Exuse me... I can only speak english (and italian :))...

We have corrected an error in experimental method (thanx to a german forum member jorganos) Now all is right... I hope!

Thanks for the support and the translation: french is a very nice language, really "melodic" and sweet, i enjoy the reading of the first translated part... !!!! :D
leyo
Posts: 757
Joined: Tue, 26. Feb 08, 16:24

Post by leyo »

Hello / bonjour

Quel boulot !!!


Ai-je raté quelque chose ou on fait abstraction des éventuels coût d'appro et de livraisons( saut... photopiles consommés...) ?
Mietitore
Posts: 428
Joined: Wed, 2. Jan 08, 14:05
x3

Post by Mietitore »

no, you don't miss anything. :)

Infact there is nothing about costs and delivery 'cause this is a study about mines productivity for raw materials.

It was not a proposed goal to study the costs and balances in Credits.

The goal was exlusively to predict a mine's production knowing the yield of an asteroid.

Thank you,
Mieti.
leyo
Posts: 757
Joined: Tue, 26. Feb 08, 16:24

Post by leyo »

Right, thanks.

That's cause i saw "E=P*K/100", but i didn't notice it was just an information you don't use.

Again, very great job !!
Mietitore
Posts: 428
Joined: Wed, 2. Jan 08, 14:05
x3

Post by Mietitore »

That information is the energy needed per production cycle and is used only to complete the tables and implemented in X-Mine Calculator.

As you can see it depends on the number of products per cycle and on the kind of product.

You are welcome!!! :)

Return to “Support et Aide pour la Trilogie X”